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ABSTRACT: In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility

(CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By
investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-
mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed
radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence
in distributed radiation sensing systems based on P-doped optical fibers.
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CONCLUSIONS: In conclusion, we have demonstrated the effectiveness of Raman DTS technology based on radiation tolerant Ge-doped MM optical fibers to accurately

measure temperature distributions in harsh environments affected by mixed field radiation. The temperature profiles achieved on Ge-doped optical fibers can then be used to
correct the RIA temperature dependence in distributed dosimeters based on P-doped fibers.
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